
Block Oriented Programming: Automating Data-Only Attacks

Kyriakos K. Ispoglou
ispo@purdue.edu
Purdue University

Bader AlBassam
balbassa@purdue.edu
Purdue University

Trent Jaeger
tjaeger@cse.psu.edu

Pennsylvania State University

Mathias Payer
mathias.payer@nebelwelt.net
EPFL and Purdue University

ABSTRACT

With the widespread deployment of Control-Flow Integrity (CFI),
control-flow hijacking attacks, and consequently code reuse at-
tacks, are significantly more difficult. CFI limits control flow to
well-known locations, severely restricting arbitrary code execution.
Assessing the remaining attack surface of an application under ad-
vanced control-flow hijack defenses such as CFI and shadow stacks
remains an open problem.

We introduce BOPC, amechanism to automatically assesswhether
an attacker can execute arbitrary code on a binary hardened with
CFI/shadow stack defenses. BOPC computes exploits for a target
program from payload specifications written in a Turing-complete,
high-level language called SPL that abstracts away architecture and
program-specific details. SPL payloads are compiled into a program
trace that executes the desired behavior on top of the target binary.
The input for BOPC is an SPL payload, a starting point (e.g., from a
fuzzer crash) and an arbitrary memory write primitive that allows
application state corruption. To map SPL payloads to a program
trace, BOPC introduces Block Oriented Programming (BOP), a new
code reuse technique that utilizes entire basic blocks as gadgets
along valid execution paths in the program, i.e., without violating
CFI or shadow stack policies. We find that the problem of mapping
payloads to program traces is NP-hard, so BOPC first reduces the
search space by pruning infeasible paths and then uses heuristics to
guide the search to probable paths. BOPC encodes the BOP payload
as a set of memory writes.

We execute 13 SPL payloads applied to 10 popular applications.
BOPC successfully finds payloads and complex execution traces ś
which would likely not have been found through manual analysis
ś while following the target’s Control-Flow Graph under an ideal
CFI policy in 81% of the cases.

ACM Reference Format:

Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer.
2018. Block Oriented Programming: Automating Data-Only Attacks. In 2018

ACM SIGSAC Conference on Computer and Communications Security (CCS

’18), October 15ś19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3243734.3243739

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’18, October 15ś19, 2018, Toronto, ON, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243739

1 INTRODUCTION

Control-flow hijacking and code reuse attacks have been challeng-
ing problems for applications written in C/C++ despite the de-
velopment and deployment of several defenses. Basic mitigations
include Data Execution Prevention (DEP) [63] to stop code injec-
tion, Stack Canaries [12] to stop stack-based buffer overflows, and
Address Space Layout Randomization (ASLR) [48] to probabilis-
tically make code reuse attacks harder. These mitigations can be
bypassed through, e.g., information leaks [28, 38, 42, 51] or code
reuse attacks [3, 37, 56, 57, 66].

Advanced control-flow hijacking defenses such as Control-Flow
Integrity (CFI) [1, 4, 41, 61] or shadow stacks/safe stacks [23, 40]
limit the set of allowed target addresses for indirect control-flow
transfers. CFImechanisms typically rely on static analysis to recover
the Control-Flow Graph (CFG) of the application. These analyses
over-approximate the allowed targets for each indirect dispatch
location. At runtime, CFI checks determine if the observed target
for each indirect dispatch location is within the allowed target
set for that dispatch location as identified by the CFG analysis.
Modern CFImechanisms [41, 44, 45, 61] are deployed in, e.g., Google
Chrome [60], Microsoft Windows 10, and Edge [59].

However, CFI still allows the attacker control over the execu-
tion along two dimensions: first, due to imprecision in the analysis
and CFI’s statelessness, the attacker can choose any of the targets
in the set for each dispatch; second, data-only attacks allow an
attacker to influence conditional branches arbitrarily. Existing at-
tacks against CFI leverage manual analysis to construct exploits for
specific applications along these two dimensions [6, 24, 29, 31, 53].
With CFI, exploits become highly program dependent as the set of
reachable gadgets is severely limited by the CFI policy, so exploits
must therefore follow valid paths in the CFG. Finding a path along
the CFG that achieves the exploit goals is much more complex than
simply finding the locations of gadgets. As a result, building attacks
against advanced control-flow hijacking defenses has become a
challenging, predominantly manual process.

We present BOPC (Block Oriented Programming Compiler) , an
automatic framework to evaluate a program’s remaining attack
surface under strong control-flow hijacking mitigations. BOPC au-
tomates the task of finding an execution trace through a buggy
program that executes arbitrary, attacker-specified behavior. BOPC
compiles an łexploitž into a program trace, which is executed on
top of the original program’s CFG. To express the desired exploits
flexibly, BOPC provides a Turing-complete, high-level language:
SPloit Language (SPL). To interact with the environment, SPL pro-
vides a rich API to call OS functions, direct access to memory, and

an abstraction for hardware registers. BOPC takes as input an SPL
payload and a starting point (e.g., found through fuzzing or manual
analysis) and returns a trace through the program (encoded as a set
of memory writes) that encodes the SPL payload.

The core component of BOPC is the mapping process through
a novel code reuse technique we call Block Oriented Programming

(BOP). First, BOPC translates the SPL payload into constraints for
individual statements and, for each statement, searches for basic
blocks in the target binary that satisfy these constraints (called can-
didate blocks). At this point, SPL abstracts register assignments from
the underlying architecture. Second, BOPC infers a resource (regis-
ter and state) mapping for each SPL statement, iterating through
the set of candidate blocks and turning them into functional blocks.
Functional blocks can be used to execute a concrete instantiation
of the given SPL statement. Third, BOPC constructs a trace that
connects each functional block through dispatcher blocks. Since
the mapping process is NP-hard, to find a solution in reasonable
time BOPC first prunes the set of functional blocks per statement
to constrain the search space and then uses a ranking based on
the proximity of individual functional blocks as a heuristic when
searching for dispatcher gadgets.

We evaluate BOPC on 10 popular network daemons and setuid
programs, demonstrating that BOPC can generate traces from a set
of 13 test payloads. Our test payloads are both reasonable exploit
payloads (e.g., calling execve with attacker-controlled parameters)
as well as a demonstration of the computational capabilities of SPL
(e.g., loops and conditionals). Applications of BOPC go beyond an
attack framework. We envision BOPC as a tool for defenders and
software developers to highlight the residual attack surface of a
program. For example, a developer can test whether a bug at a
particular statement enables a practical code reuse attack in the
program. Overall, we present the following contributions:

• Abstraction: We introduce SPL, a C dialect with access to
virtual registers and an API to call OS and other library
functions, suitable for writing exploit payloads. SPL enables
the necessary abstraction to scale to large applications.
• Search: Development of a trace module that allows execution
of an arbitrary payload, written in SPL, using the target
binary’s code. The trace module considers strong defenses
such as DEP, ASLR, shadow stacks, and CFI alone or in
combination. The trace module enables the discovery of
viable mappings through a search process.
• Evaluation: Evaluation of our prototype demonstrates the
generality of our mechanism and uncovers exploitable vul-
nerabilities where manual exploitation may have been infea-
sible. For 10 target programs, BOPC successfully generates
exploit payloads and program traces to implement code reuse
attacks for 13 SPL exploit payloads for 81% of the cases.

2 BACKGROUND AND RELATED WORK

Initially, exploits relied on simple code injection to execute arbitrary
code. The deployment of Data Execution Prevention (DEP) [63]
mitigated code injection and attacks moved to reusing existing code.
The first code reuse technique, return to libc [26], simply reused
existing libc functions. Return Oriented Programming (ROP) [56]
extended code reuse to a Turing-complete technique. ROP locates

small sequences of code which end with a return instruction, called
łgadgets.ž Gadgets are connected by injecting the correct state, e.g.,
by preparing a set of invocation frames on the stack [56]. A number
of code reuse variations followed [3, 9, 32], extending the approach
from return instructions to arbitrary indirect control-flow transfers.

Several tools [30, 46, 52, 54] seek to automate ROP payload gen-
eration. However, the automation suffers from inherent limitations.
These tools fail to find gadgets in the target binary that do not
follow the expected form łinst1; inst2; ... retn;ž as they
search for a set of hard coded gadgets that form pre-determined
gadget chains. Instead of abstracting the required computation,
they search for specific gadgets. If any gadget is not found or if a
more complex gadget chain is needed, these tools degenerate to
gadget dump tools, leaving the process of gadget chaining to the
researcher who manually creates exploits from discovered gadgets.

The invention of code reuse attacks resulted in a plethora of new
detection mechanisms based on execution anomalies and heuris-
tics [10, 25, 35, 47, 50] such as frequency of return instructions.
Such heuristics can often be bypassed [7].

While the aforementioned tools help to craft appropriate pay-
loads, finding the vulnerability is an orthogonal process. Automatic
Exploit Generation (AEG) [2] was the first attempt to automatically
find vulnerabilities and generate exploits for them. AEG is limited
in that it does not assume any defenses (such as the now basic DEP
or ASLR mitigations). The generated exploits are therefore buffer
overflows followed by static shellcode.

2.1 Control Flow Integrity

Control Flow Integrity [1, 4, 41, 61] (CFI) mitigates control-flow
hijacking to arbitrary locations (and therefore code reuse attacks).
CFI restricts the set of potential targets that are reachable from
an indirect dispatch. While CFI does not stop the initial memory
corruption, it validates the code pointer before it is used. CFI infers
an (overapproixmate) CFG of the program to determine the allowed
targets for each indirect control-flow transfer. Before each indirect
dispatch, the target address is checked to determine if it is a valid
edge in the CFG, and if not an exception is thrown. This limits the
freedom for the attacker, as she can only target a small set of targets
instead of any executable byte in memory. For example, an attacker
may overwrite a function pointer through a buffer overflow, but the
function pointer is checked before it is used. Note that CFI targets
forward edges, i.e., virtual dispatchers for C++ or indirect function
calls for C.

With CFI, code reuse attacks become harder, but not impossi-
ble [6, 29, 31, 53]. Depending on the application and strength of the
CFI mechanism, CFI can be bypassed with Turing-complete pay-
loads, which are often highly complex to comply with the CFG. So
far, these code-reuse attacks rely on manually constructed payloads.

Deployed CFI implementations [41, 44, 45, 49, 61] use a static
over-approximation of the CFG based on method prototypes and
class hierarchy. PittyPat [27] and PathArmor [64] introduce path
sensitivity that evaluates partial execution paths. Newton [65] in-
troduced a framework that reasons about the strength of defenses,
including CFI. Newton exposes indirect pointers (along with their
allowed target set) that are reachable (i.e., controllable by an ad-
versary) through given entry points. While Newton displays all

usable łgadgets,ž it cannot stitch them together and effectively is a
CFI-aware ROP gadget search tool that helps an analyst to manually
construct an attack.

2.2 Shadow Stacks

While CFI protects forward edges in the CFG (i.e., function pointers
or virtual dispatch), a shadow stack orthogonally protects backward
edges (i.e., return addresses). Shadow stacks keep a protected copy
(called shadow) of all return addresses on a separate, protected
stack. Function calls store the return address both on the regular
stack and on the shadow stack. When returning from a function,
the mitigation checks for equivalence and reports an error if the
two return addresses do not match. The shadow stack itself is
assumed to be at a protected memory location to keep the adversary
from tampering with it. Shadow stacks enforce stack integrity and
protect the binary from any control-flow hijacking attack against
the backward edge.

2.3 Data-only Attacks

While CFI mitigates code-reuse attacks, CFI cannot stop data-only
attacks. Manipulating a program’s data can be enough for a success-
ful exploitation. Data-only attacks target the program’s data rather
than its control flow. E.g., having full control over the arguments to
execve() suffices for arbitrary command execution. Also, data in a
program may be sensitive: consider overwriting the uid or a vari-
able like is_admin. Data Oriented Programming (DOP) [34] is the
generalization of data-only attacks. Existing DOP attacks rely on
an analyst to identify sensitive variables for manual construction.

Similarly to CFI, it is possible to build the Data Flow Graph of the
program and apply Data Flow Integrity (DFI) [8] to it. However, to
the best of our knowledge, there are no practical DFI-based defenses
due to prohibitively high overhead of data-flow tracking.

In comparison to existing data-only attacks, BOPC automatically
generates payloads based on a high-level language. The payloads
follow the valid CFG of the program but not its Data Flow Graph.

3 ASSUMPTIONS AND THREAT MODEL

Our threat model consists of a binary with a known memory cor-
ruption vulnerability that is protected with the state-of-the-art
control-flow hijack mitigations, such as CFI along with a Shadow
Stack. Furthermore, the binary is also hardened with DEP, ASLR
and Stack Canaries.

We assume that the target binary has an arbitrary memory
write vulnerability. That is, the attacker can write any value to
any (writable) address. We call this an Arbitrary memory Write

Primitive (AWP). To bypass probabilistic defenses such as ASLR, we
assume that the attacker has access to an information leak, i.e., a
vulnerability that allows her to read any value from any memory
address. We call this an Arbitrary memory Read Primitive (ARP).
Note that the ARP is optional and only needed to bypass orthogonal
probabilistic defenses.

We also assume that there exists an entry point, i.e., a location
that the program reaches naturally after completion of all AWPs
(and ARPs). Thus BOPC does not require code pointer corruption
to reach the entry point. Determining an entry point is considered

to be part of the vulnerability discovery process. Thus, finding this
entry point is orthogonal to our work.

Note that these assumptions are in line with the threat model of
control-flow hijack mitigations that aim to prevent attackers from
exploiting arbitrary read and write capabilities. These assumptions
are also practical. Orthogonal bug finding tools such as fuzzing
often discover arbitrary memory accesses that can be abstracted to
the required arbitrary read and writes, placing the entry point right
after the AWP. Furthermore, these assumptions map to real bugs.
Web servers, such as nginx, spawn threads to handle requests and a
bug in the request handler can be used to read or write an arbitrary
memory address. Due to the request-based nature, the adversary
can repeat this process multiple times. After the completion of the
state injection, the program follows an alternate and disjoint path
to trigger the injected payload.

These assumptions enable BOPC to inject a payload into a tar-
get binary’s address space, modifying its memory state to execute
the payload. BOPC assumes that the AWP (and/or ARP) may be
triggered multiple times to modify the memory state of the target
binary. After the state modification completes, the SPL payload
executes without using the AWP (and/or ARP) further. This sepa-
rates SPL execution into two phases: state modification and payload
execution. The AWP allows state modification, BOPC infers the
required state change to execute the SPL payload.

4 DESIGN

Figure 1 shows how BOPC automates the analysis tasks necessary
to leverage AWPs to produce a useful exploit in the presence of
strong defenses, including CFI. First, BOPC provides an exploit
programming language, called SPL, that enables analysts to define
exploits independent of the target program or underlying architec-
ture. Second, to automate SPL gadget discovery, BOPC finds basic
blocks from the target program that implement individual SPL
statements, called functional blocks. Third, to chain basic blocks
together in a manner that adheres with CFI and shadow stacks,
BOPC searches the target program for sequences of basic blocks
that connect pairs of neighboring functional blocks, which we call
dispatcher blocks. Fourth, BOPC simulates the BOP chain to produce
a payload that implements that SPL payload from a chosen AWP.

The BOPC design builds on two key ideas: Block Oriented Pro-
gramming and Block Constraint Summaries. First, defenses such as
CFI impose stringent restrictions on transitions between gadgets,
so an exploit no longer has the flexibility of setting the instruc-
tion pointer to arbitrary values. Instead, BOPC implements Block
Oriented Programming (BOP), which constructs exploit programs
called BOP chains from basic block sequences in the valid CFG of
a target program. Note that our CFG encodes both forward edges

(protected by CFI) and backward edges (protected by shadow stack).

(1) SPL Payload
(2) Selecting

functional blocks

(3) Searching for

dispatcher blocks

(4) Stitching

BOP gadgets

Figure 1: Overview of BOPC’s design.

Functional

Dispatcher

BOP
Gadget

Figure 2: BOP gadget structure. The functional part consists

of a single basic block that executes an SPL statement. Two

functional blocks are chained together through a series of

dispatcher blocks, without clobbering the execution of the

previous functional blocks.

For BOP, gadgets are chains of entire basic blocks (sequences of
instructions that end with a direct or indirect control-flow transfer),
as shown in Figure 2. A BOP chain consists of a sequence of BOP
gadgets where each BOP gadget is: one functional block that imple-
ments a statement in an SPL payload and zero or more dispatcher
blocks that connect the functional block to the next BOP gadget in
a manner that complies with the CFG.

Second, BOPC abstracts each basic block from individual in-
structions into Block Constraint Summaries, enabling blocks to be
employed in a variety of different ways. That is, a single block
may perform multiple functional and/or dispatching operations by
utilizing different sets of registers for different operations. That is,
a basic block that modifies a register in a manner that may fulfill
an SPL statement may be used as a functional block, otherwise it
may be considered to serve as a dispatcher block.

BOPC leverages abstract Block Constraint Summaries to apply
blocks in multiple contexts. At each stage in the development of
a BOP chain, the blocks that may be employed next in the CFG
as dispatcher blocks to connect two functional blocks depend on
the block summary constraints for each block. There are two cases:
either the candidate dispatcher block’s summary constraints indi-
cate that it will modify the register state set and/or the memory
state by the functional blocks, called the SPL state, or it will not,
enabling the computation to proceed without disturbing the effects
of the functional blocks. A block that modifies a current SPL state
unintentionally, is said to be a clobbering block for that state. Block
summary constraints enable identification of clobbering blocks at
each point in the search.

An important distinction between BOP and conventional ROP
(and variants) is that the problem of computing BOP chains is NP-
hard, as proven in Appendix B. Conventional ROP assumes that
indirect control-flows may target any executable byte in memory
while BOP must follow a legal path through the CFG for any chain
of blocks, resulting in the need for automation.

4.1 Expressing Payloads

BOPC provides a programming language, called SPloit Language

(SPL) that allows analysts to express exploit payloads in a com-
pact high-level language that is independent of target programs

Simple loop Spawn a shell

void payload () {

__r0 = 0;

LOOP:

__r0 += 1;

if (__r0 != 128)

goto LOOP;

returnto 0x446730;

}

void payload () {

string prog = "/bin/sh\0";

int64 *argv = {&prog , 0x0};

__r0 = &prog;

__r1 = &argv;

__r2 = 0;

execve(__r0 , __r1 , __r2);

}

Table 1: Examples of SPL payloads.

or processor architectures. SPL is a dialect of C. Compared to min-
DOP [34], SPL allows use of both virtual registers and memory for
operations and declaration of variables/constants. Table 1 shows
some sample payloads. Overall, SPL has the following features:

• It is Turing-complete;
• It is architecture independent;
• It is close to a well known, high level language.

Compared to existing exploit development tools [30, 52, 54], the
architecture independence of SPL has important advantages. First,
the same payload can be executed under different ISAs or operat-
ing systems. Second, SPL uses a set of virtual registers, accessed
through reserved volatile variables. Virtual registers increase flex-
ibility, which in turn increases the chances of finding a solution:
virtual registers may be mapped to any general purpose register
and the mapping may be changed dynamically.

To interact with the environment, SPL defines a concise API
to access OS functionality. Finally, SPL supports conditional and
unconditional jumps to enable control-flow transfers to arbitrary
locations. This feature makes SPL a Turing-complete language, as
proven in Appendix C. The complete language specifications are
shown in Appendix A in Extended BackusśNaur form (EBNF).

The environment for SPL differs from that of conventional lan-
guages. Instead of running code directly on a CPU, our compiler
encodes the payload as a mapping of instructions to functional
blocks. That is, the underlying runtime environment is the target
binary and its program state, where payloads are executed as side
effects of the underlying binary.

4.2 Selecting functional blocks

To generate a BOP chain for an SPL payload, BOPC must find a
sequence of blocks that implement each statement in the SPL pay-
load, which we call functional blocks. The process of building BOP
chains starts by identifying functional blocks per SPL statement.

Conceptually, BOPC must compare each block to each SPL state-
ment to determine if the block can implement the statement. How-
ever, blocks are in terms of machine code and SPL statements are
high-level program statements. To provide flexibility for matching
blocks to SPL statements, BOPC computes Block Constraint Sum-

maries, which define the possible impacts that the block would
have on SPL state. Block Constraint Summaries provide flexibility
in matching blocks to SPL statements because there are multiple
possible mappings of SPL statements and their virtual registers to
the block and its constraints on registers and state.

The constraint summaries of each basic block are obtained by
isolating and symbolically executing it. The effect of symbolically

Long path with simple constraints Short path with complex constraints

a, b, c, d, e = input();

// point A

if (a == 1) {

if (b == 2) {

if (c == 3) {

if (d == 4) {

if (e == 5) {

// point B

a = input();

X = sqrt(a);

Y = log(a*a*a - a)

// point A

if (X == Y) {

// point B

Table 2: A counterexample that demonstrates why proxim-

ity between two functional blocks can be inaccurate. Left, we

can move from point A to point B even if they are 5 blocks

apart from each other. Right, it is much harder to satisfy the

constrains and to move from A to B, despite the fact that A

and B are only 1 block apart.

the shortest path from the BE to the closest return point and uses
this value as an edge weight for that callee.

After creation of the delta graph, our algorithm selects exactly
one node (i.e., functional block) from each set (i.e., payload state-
ment), to minimize the total weight of the resulting induced sub-

graph 1. This selection of functional blocks is considered to be the
most likely to give a solution, so the next step is to find the exact
dispatcher blocks and create the BOP gadgets for the SPL payload.

4.5 Stitching BOP gadgets

The minimum induced subgraph from the previous step determines
a set of functional blocks that may be stitched together into an SPL
payload. This set of functional blocks has minimal distance to each
other, thus making satisfiable dispatcher paths more likely.

To find a dispatcher path between two functional blocks, BOPC
leverages concolic execution [55] (symbolic execution along a given
path). Along the way, it collects the required constraints that are
needed to lead the execution to the next functional block. Sym-
bolic execution engines [5, 58] translate basic blocks into sets of
constraints and use Satisfiability Modulo Theories (SMT) to find
satisfying assignments for these constraints; symbolic execution is
therefore NP-complete. Starting from the (context sensitive) short-
est path between the functional blocks, BOPC guides the symbolic
execution engine, collecting the corresponding constraints.

To construct an SPL payload from a BOP chain, BOPC launches
concolic execution from the first functional block in the BOP chain,
starting with an empty state. At each step BOPC tries the first K
shortest dispatcher paths until it finds one that reaches the next
functional block (the edges in the minimum induced subgraph in-
dicate which is the łnextž functional block). The corresponding
constraints are added to the current state. The search therefore
incrementally adds BOP gadgets to the BOP chain. When a func-
tional block represents a conditional SPL statement, its node in the
induced subgraph contains two outgoing edges (i.e., the execution
can transfer control to two different statements). However during
the concolic execution, the algorithm does not know which one will
be followed, it clones the current state and independently follows
both branches, exactly like symbolic execution [5].

1The induced subgraph of the delta graph is a subgraph of the delta graph with one
node (functional block) for each SPL statement and with edges that represent their
shortest available dispatcher block chain.

Reaching the last functional block, BOPC checkswhether the con-
straints have a satisfying assignment and forms an exploit payload.
Otherwise, it falls back and tries the next possible set of functional
blocks. To repeat that execution on top of the target binary, these
constraints are concretized and translated into a memory layout
that will be initialized through AWP in the target binary.

5 IMPLEMENTATION

Our open source prototype, BOPC, is implemented in Python and
consists of approximately 14,000 lines of code. The current pro-
totype focuses on x64 binaries, we leave the (straightforward) ex-
tension to other architectures such as x86 or ARM as future work.
BOPC requires three distinct inputs:

• The exploit payload expressed in SPL,
• The vulnerable application on top of which the payload runs,
• The entry point in the vulnerable application, which is a
location that the program reaches naturally and occurs after
all AWPs have been completed.

The output of BOPC is a sequence of (address,value, size) tuples
that describe how the memory should be modified during the state
modification phase (Section 3) to execute the payload. Optionally, it
may also generate some additional (stream,value, size) tuples that
describe what additional input should be given on any potentially
open łstreamsž (file descriptors, sockets, stdin) that the attacker
controls during the execution of the payload.

A high level overview of BOPC is shown in Figure 5. Our algo-
rithm is iterative; that is, in case of a failure, the red arrows, indicate
which module is executed next.

5.1 Binary Frontend

The Binary Frontend uses angr [58] to lift the target binary into
the VEX intermediate representation to expose the application’s
CFG. Operating directly on basic blocks is cumbersome and heavily
dependent on the Application Binary Interface (ABI). Instead, we
translate each basic block into a block constraint summary. Abstrac-
tion leverages symbolic execution [39] to łsummarizež the basic
block into a set of constraints encoding changes in registers and
memory, and any potential system, library call, or conditional jump
at the end of the block ś generally any effect that this block has on
the program’s state. BOPC executes each basic block in an isolated
environment, where every action (such as accesses to registers or
memory) is monitored. Therefore, instead of working with the in-
structions of each basic block, BOPC utilizes its abstraction for all
operations. The abstraction information for every basic block is
added to the CFG, resulting in CFGA.

5.2 SPL Frontend

The SPL Front end translates the exploit payload into a graph-based
Intermediate Representation (IR) for further processing. To increase
the flexibility of the mapping process, statements in a sequence
can be executed out-of-order. For each statement sequence we
build a dependence graph based on a customized version of Kahn’s
topological sorting algorithm [36], to infer all groups of independent
statements. Independent statements in a subsequence are then
turned into a set of statements which can be executed out-of-order.

Binary

Frontend
Binary

SPL

Frontend

SPL

payload

Find

Candidate

Blocks

Find

Functional

Blocks

Build

Delta

Graph

Minimum

Induced

Subgraphs
Simulation Output (addr, value)

(addr, value)

(addr, value)

. . .

(addr, value)

N KPL

CFGA

IR

RG

VG

CB

FB

MAdj

δG Hk Cw

Figure 5: High level overview of the BOPC implementation. The red arrows indicate the iterative process upon failure. CFGA:

CFG with basic block abstractions added, IR: Compiled SPL payload RG : Register mapping graph, VG : All variable mapping

graphs, CB : Set of candidate blocks, FB : Set of functional blocks, MAdj : Adjacency matrix of SPL payload, δG: Delta graph,

Hk : Induced subgraph, Cw : Constraint set. L: Maximum length of continuous dispatcher blocks, P : Upper bound on payload

łshufflesž, N : Upper bound on minimum induced subgraphs, K : Upper bound on shortest paths for dispathers.

This results in a set of equivalent payloads that are permutations
of the original. Our goal is to find a solution for any of them.

5.3 Locating candidate block sets

SPL is a high level language that hides the underlying ABI. There-
fore, BOPC looks for potential ways to łmapž the SPL environment
to the underlying ABI. The key insight in this step is to find all
possible ways to map the individual elements from the SPL envi-
ronment to the ABI (though candidate blocks) and then iteratively
selecting valid subsets from the ABI to łsimulatež the environment
of the SPL payload.

Once the CFGA and the IR are generated, BOPC searches for
and marks candidate basic blocks, as described in Section 4.2. For a
block to be a candidate, it must łsemantically matchž with one (or
more) payload statements. Table 3 shows the matching rules. Note
that variable assignments, unconditional jumps, and returns do not
require a basic block and therefore are excluded from the search.

All statements that assign or modify registers require the basic
block to apply the same operation on the same, as yet undetermined,
hardware registers. For function calls, the requirement for the basic
block is to invoke the same call, either as a system call or as a library
call (if the arguments are different, the block is clobbering). Note
that the calling convention exposes the register mapping.

Upon a successful matching, BOPC builds the following data
structures:

• RG , the Register Mapping Graph which is a bipartite undi-
rected graph. The nodes in the two sets represent the virtual
and hardware registers respectively. The edges represent po-
tential associations between virtual and hardware registers.
• VG , the Variable Mapping Graph, which is very similar to
RG , but instead associates payload variables to underlying
memory addresses. VG is unique for every edge in RG i.e.:

∀(rα , reдγ) ∈ RG ∃!V
αγ
G

• DM , the Memory Dereference Set, which has all memory ad-
dresses that are dereferenced and their values are loaded
into registers. Those addresses can be symbolic expressions
(e.g., [rbx + rdx*8]), and therefore we do not know the
concrete address they point to until execution reaches them
(see Section 5.6).

After this step, each SPL statement has a set of candidate blocks.
Note that a basic block can be candidate for multiple statements.
If for some statement there are no candidate blocks, the algorithm
halts and reports that the program cannot be synthesized.

5.4 Identifying functional block sets

After determining the set of candidate blocks, CB , BOPC iteratively

identifies, for each SPL statement, which candidate blocks can serve
as functional blocks, i.e., the blocks that perform the operations.
This step determines for each candidate block if there is a resource
mapping that satisfies the block’s constraints.

BOPC identifies the concrete set of hardware registers and mem-
ory addresses that execute the desired statement. A successful map-
ping identifies candidate blocks that can serve as functional blocks.

To find the hardware-to-virtual register association, BOPC searches
for a maximum bipartite matching [11] in RG . If such a mapping
does not exist, the algorithm halts. The selected edges indicate the
set of VG graphs that are used to find the memory mapping, i.e.,
the variable-to-address association (see Section 5.3, there can be a
VG for every edge in RG). Then for every VG the algorithm repeats
the same process to find another maximum bipartite matching.

This step determines, for each statement, which concrete regis-
ters and memory addresses are reserved. Merging this information
with the set of candidate blocks constructs each block’s SPL state,
enabling the removal of candidate blocks that are unsatisfiable.

However, there may be multiple candidate blocks for each SPL
statement, and thus the maximum bipartite match may not be
unique. The algorithm enumerates allmaximumbipartitematches [62],
trying them one by one. If no match leads to a solution, the algo-
rithm halts.

5.5 Selecting functional blocks

Given the functional block set FB , this step searches for a subset
that executes all payload statements. The goal is to select exactly
one functional block for every IR statement and find dispatcher
blocks to chain them together. BOPC builds the delta graph δG,
described in Section 4.4.

Once the delta graph is generated, this step locates theminimum

(in terms of total edge weight) induced subgraph, Hk0 , that contains

Statement Form Abstraction Actions Example

Register Assignment

rα = C
reдγ ← C

RG ∪
{

(rα , reдγ)
}

ś movzx rax, 7h

reдγ ← ∗A DM ∪ {A} mov rax, ds:fd

rα = &V
reдγ ← C, C ∈R∧W

V
αγ
G
∪
{

(V ,A)
} ś lea rcx, [rsp+20h]

reдγ ← ∗A DM ∪ {A} mov rdx, [rsi+18h]

Register Modification rα ⊙= C reдγ ← reдγ ⊙ C RG ∪
{

(rα , reдγ)
}

dec rsi

Memory Read rα = ∗ rβ reдγ ← ∗reдδ RG ∪
{

(rα , reдγ), (rβ , reдδ)
} mov rax, [rbx]

Memory Write ∗ rα = rβ ∗reдγ ← reдδ mov [rax], [rbx]

Call call(rα , rβ , ...) Ijk_Call to call RG ∩
{

(rα ,%rdi), (rβ ,%rsi), ...
}

call execve

Conditional Jump
i f (rα ⊙= C)

дoto LOC

Ijk_Boring ∧

condition = reдγ ⊙ C
RG ∪

{

(rα , reдγ)
} test rax, rax

jnz LOOP

Table 3: Semantic matching of SPL statements to basic blocks. Abstraction indicates the requirements that the basic block

abstraction needs to have to match the SPL statement in the Form. Upon a match, the appropriate Actions are taken. rα ,

rβ : Virtual registers, reдγ , reдδ : Hardware registers, C: Constant value, V : SPL variable, A: Memory address, RG : Register

mapping graph, VG : Variable mapping graph, DM : Dereferenced Addresses Set, Ijk_Call: A call to an address, Ijk_Boring: A

normal jump to an address.

the complete set of functional blocks to execute the SPL payload.
If Hk0 , does not result in a solution, the algorithm tries the next
minimum induced subgraph,Hk1 , until a solution is found or a limit
is reached.

If the resulting delta graph does not lead to a solution, this
step łshufflesž out-of-order payload statements, see Section 5.2,
and builds a new delta graph. Note that the number of different
permutations may be exponential. Therefore, our algorithm sets an
upper bound P on the number of tried permutations.

Each permutation results in a different yet semantically equiv-
alent SPL payload, so the CFG of the payload (called Adjacency

Matrix,MAdj) needs to be recalculated.

5.6 Discovering dispatcher blocks

The simulation phase takes the individual functional blocks (con-
tained in the minimum induced subgraph Hki) and tries to find
the appropriate dispatcher blocks to compose the BOP gadgets. It
returns a set of memory assignments for the corresponding dis-
patcher blocks, or an error indicating un-satisfiable constraints for
the dispatchers.

BOPC is called to find a dispatcher path for every edge in the
minimum induced subgraph. That is, we need to simulate every
control flow transfer in the adjacency matrix, MAdj of the SPL
payload. However, dispatchers are built on the prior set of BOP
gadgets and their impact on the binary’s execution state so far, so
BOP gadgets must be stitched with the respect to the program’s
current flow originating from the entry point.

Finding dispatcher blocks relies on concolic execution. Our algo-
rithm utilizes functional block proximity as a metric for dispatcher
path quality. However, it cannot predict which constraints will take
exponential time to solve (in practice we set a timeout). Therefore
concolic execution selects the K shortest dispatcher paths relative
to the current BOP chain, and tries them in order until one produces
a set of satisfiable constraints. It turns that this metric works well
in practice even for small values of K (e.g., 8). This is similar to the
k-shortest path [67] algorithm used for the delta graph.

When simulation starts it also initializes any SPL variables at the
locations that are reserved during the variablemapping (Section 5.4).

These addresses are marked as immutable, so any unintended mod-
ification raises an exception which stops this iteration.

In Table 3, we introduce the set of Dereferenced Addresses, DM ,
which is the set of memory addresses whose contents are loaded
into registers. Simulation cannot obtain the exact location of a
symbolic address (e.g., [rax + 4]) until the block is executed
and the register has a concrete value. Before simulation reaches a
functional block, it concretizes any symbolic addresses from DM

and initializes the memory cell accordingly. If that memory cell
has already been set, any initialization prior to the entry point
cannot persist. That is, BOPC cannot leverage an AWP to initialize
this memory cell and the iteration fails. If a memory cell has been
used in the constraints, its concretization can make constraints
unsatisfiable and the iteration may fail.

Simulation traverses the minimum induced subgraph, and incre-

mentally extends the SPL state from one BOP gadget to the next,
ensuring that newly added constraints remain satisfiable. When
encountering a conditional statement (i.e., a functional block has
two outgoing edges), BOPC clones the current state and continues
building the trace for both paths independently, in the same way
that a symbolic execution engine handles conditional statements.
When a path reaches a functional block that was already visited,
it gracefully terminates. At the end, we collect all those states and
check whether the constraints of all these paths are satisfied or not.
If so, we have a solution.

5.7 Synthesizing exploits

If the simulation module returns a solution, the final step is to en-
code the execution trace as a set of memory writes in the target
binary. The constraint set Cw collected during simulation reveals a
memory layout that leads to a flow across functional blocks accord-
ing to the minimum induced subgraph. Concretizing the constraints
for all participating conditional variables at the end of the simula-
tion can result in incorrect solutions. Consider the following case:

a = input();

if (a > 10 && a < 20) {

a = 0;

/* target block */

}

Vulnerable Application CFG Time

(m:s)

Total number of functional blocks

Program Vulnerability Prim. Nodes Edges RegSet RegMod MemRd MemWr Call Cond Total

ProFTPd CVE-2006-5815 [18] AW 27,087 49,862 10:08 40,143 387 1,592 199 77 3,029 45,427
nginx CVE-2013-2028 [14] AW 24,169 44,645 12:36 31,497 1,168 1,522 279 35 3375 37,876
sudo CVE-2012-0809 [20] FMS 3,399 6,267 01:14 5,162 26 157 18 45 307 5715
orzhttpd BugtraqID 41956 [17] FMS 1,354 2,163 00:27 2,317 9 39 8 11 89 2473
wuftdp CVE-2000-0573 [22] FMS 8,899 17,092 03:22 14,101 62 274 11 94 921 15,463
nullhttpd CVE-2002-1496 [15] AW 1,488 2,701 00:27 2,327 77 54 7 19 125 2,609
opensshd CVE-2001-0144 [16] AW 6,688 12,487 01:53 8,800 98 214 19 63 558 9,752
wireshark CVE-2014-2299 [21] AW 74,186 162,111 29:41 12,4053 639 1,736 193 100 4555 131276
apache CVE-2006-3747 [13] AW 18,790 34,205 10:22 33,615 212 490 66 127 1,768 36,278
smbclient CVE-2009-1886 [19] FMS 166,081 351,309 82:25 265,980 1,481 6,791 951 119 28,705 304,027

Table 4: Vulnerable applications. The Prim. column indicates the primitive type (AW = Arbitrary Write, FMS = ForMat String).

Time is the amount of time needed to generate the abstractions for every basic block. Functional blocks show the total number

for each of the statements (RegSet = Register Assignments, RegMod = Register Modifications, MemRd = Memory Load, MemWr =

Memory Store, Call = system/library calls, Cond = Conditional Jumps). Note that the number of call statements is small because

we are targeting a predefined set of calls. Also note that MemRd statements are a subset of RegSet statements.

Payload Description |S | flat?

regset4 Initialize 4 registers with arbitrary values 4 ✓

regref4 Initialize 4 registers with pointers to arbitrary memory 8 ✓

regset5 Initialize 5 registers with arbitrary values 5 ✓

regref5 Initialize 5 registers with pointers to arbitrary memory 10 ✓

regmod Initialize a register with an arbitrary value and modify it 3 ✓

memrd Read from arbitrary memory 4 ✓

memwr Write to arbitrary memory 5 ✓

print Display a message to stdout using write 6 ✓

execve Spawn a shell through execve 6 ✓

abloop Perform an arbitrarily long bounded loop utilizing regmod 2 ✗

infloop Perform an infinite loop that sets a register in its body 2 ✗

ifelse An if-else condition based on a register comparison 7 ✗

loop Conditional loop with register modification 4 ✗

Table 5: SPL payloads. Each payload consists of |S | state-

ments. Payloads that produce flat delta graphs (i.e., have no

jump statements), are marked with ✓.memwr payloadmod-

ifies programmemory on the fly, thus preserving the Turing

completeness of SPL (recall from Section 3 that AWP/ARP-

based state modification is no longer allowed).

The symbolic execution engine concretizes the symbolic variable
assigned to a upon assignment. When execution reaches łtarget
blockž, a is 0, which is contradicts the precondition to reach the
target block. Hence, BOPC needs to resolve the constraints during
(i.e., on the fly), rather than at the end of the simulation.

Therefore, constraints are solved inline in the simulation. BOPC
carefully monitors all variables and concretizes them at the łrightž
moment, just before they get overwritten. More specifically, mem-
ory locations that are accessed for first time, are assigned a symbolic
variable. Whenever a memory write occurs, BOPC checks whether
the initial symbolic variable still exists in the new symbolic expres-
sion. If not, BOPC concretizes it, adding the concretized value to
the set of memory writes.

There are also some symbolic variables that do not participate
in the constraints, but are used as pointers. These variables are
concretized to point to a writable location to avoid segmentation
faults outside of the simulation environment.

Finally, it is possible for registers or external symbolic variables
(e.g., data from stdin, sockets or file descriptors) to be part of the
constraints. BOPC executes a similar translation for the registers
and any external input, as these are inputs to the program that are
usually also controlled by the attacker.

6 EVALUATION

To evaluate BOPC, we leverage a set of 10 applications with known
memory corruption CVEs, listed in Table 4. These CVEs correspond
to arbitrary memory writes [6, 33, 34], fulfilling our AWP primitive
requirement. Table 4 contains the total number of all functional
blocks for each application. Although there are many functional
blocks, the difficulty of finding stitchable dispatcher blocks makes
a significant fraction of them unusable.

Basic block abstraction is a time consuming process ś espe-
cially for applications with large CFGs ś but these results may
be reused across iterations. Thus, as a performance optimization,
BOPC caches the resulting abstractions of the Binary Frontend
(Figure 5) to a file and loads them for each search, thus avoiding
the startup overhead listed in Table 4.

To demonstrate the effectiveness of our algorithm, we chose
a set of 13 representative SPL payloads 2 shown in Table 5. Our
goal is to łmap and runž each of these payloads on top each of the
vulnerable applications. Table 6 shows the results of running each
payload. BOPC successfully finds a mapping of memory writes to
encode an SPL payload as a set of side effects executed on top of the
applications for 105 out of 130 cases, approximately 81%. In each
case, the memory writes are sufficient to reconstruct the payload
execution by strictly following the CFG without violating a strict
CFI policy or stack integrity.

Table 6 shows that applications with large CFGs result in higher
success rates, as they encapsulate a łricherž set of BOP gadgets.
Achieving truly infinite loops is hard in practice, as most of the
loops in our experiments involve some loop counter that is modified
in each iteration. This iterator serves as an index to dereference
an array. By falsifying the exit condition through modifying loop
variables (i.e., the loop becomes infinite), the program eventually
terminates with a segmentation fault, as it tries to access memory
outside of the current segment. Therefore, even though the loop
would run forever, an external factor (segmentation fault) causes
it to stop. BOPC aims to address this issue by simulating the same
loop multiple times. However, finding a truly infinite loop requires

2Results depend on the SPL payloads and the vulnerable applications. We chose the
SPL payloads to showcase all SPL features, other payloads or combination of payloads
are possible. We encourage the reader to play with the open-source prototype.

Program
SPL payload

regset4 regref4 regset5 regref5 regmod memrd memwr print execve abloop infloop ifelse loop

ProFTPd ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 32 ✗1 ✓ 128+ ✓ ∞ ✓ ✓ 3

nginx ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗4 ✓ ✓ 128+ ✓ ∞ ✓ ✓ 128

sudo ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗4 ✓ 128+ ✗4 ✗4

orzhttpd ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗4 ✗1 ✗4 ✓ 128+ ✗4 ✗3

wuftdp ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗1 ✓ 128+ ✓ 128+ ✗4 ✗3

nullhttpd ✓ ✓ ✓ ✓ ✓ ✓ ✗3 ✗3 ✓ ✓ 30 ✓ ∞ ✗4 ✗3

opensshd ✓ ✓ ✓ ✓ ✓ ✓ ✗4 ✗4 ✗4 ✓ 512 ✓ 128+ ✓ ✓ 99

wireshark ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 4 ✗1 ✓ 128+ ✓ 7 ✓ ✓ 8

apache ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗4 ✗4 ✓ ∞ ✓ 128+ ✓ ✗4

smbclient ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1 ✗1 ✓ 1057 ✓ 128+ ✓ ✓ 256

Table 6: Feasibility of executing various SPL payloads for each of the vulnerable applications. An✓means that the SPL payload

was successfully executed on the target binary while a ✗ indicates a failure, with the subscript denoting the type of failure

(✗1 = Not enough candidate blocks, ✗2 = No valid register/variable mappings, ✗3 = No valid paths between functional blocks

and ✗4 = Un-satisfiable constraints or solver timeout). Note that in the first two cases (✗1 and ✗2), we know that there is no

solution while, in the last two (✗3 and ✗4), a solution might exists, but BOPC cannot find it, either due to over-approximation

or timeouts. The numbers next to the ✓ in abloop, infloop, and loop columns indicate the maximum number of iterations. The

number next to the print column indicates the number of character successfully printed to the stdout.

BOPC to simulate it an infinite number of times, which is infeasible.
For some cases, we managed to verify that the accessed memory
inside the loop is bounded and therefore the solution truly is an
infinite loop. Otherwise, the loop is arbitrarily bounded with the
upper bound set by an external factor.

For some payloads, BOPC was unable to find an exploit trace.
This is is either due to imprecision of our algorithm, or because no
solution exists for the written SPL payload. We can alleviate the
first failure by increasing the upper bounds and the timeouts in our
configuration. Doing so, makes BOPC search more exhaustively at
the cost of search time.

The failure to find a solution exposes the limitations of the vul-
nerable application. This type of failure is due to the łstructurež of
the application’s CFG, which prevents BOPC from finding a trace
for an SPL payload. Hence, a solution may not exist due to one the
following:

(1) There are not enough candidate blocks or functional blocks.
(2) There are no valid register / variable mappings.
(3) There are no valid paths between functional blocks.
(4) The constraints between blocks are unsatisfiable or symbolic

execution raised a timeout.

For instance, if an application (e.g., ProFTPd) never invokes
execve then there are no candidate blocks for execve SPL sate-
ments. Thus, we can infer from the execve column in Table 6 that
all applications with a ✗1 never invoke execve.

In Section 3 wemention that the determination of the entry point
is part of the vulnerability discovery process. Therefore, BOPC as-
sumes that the entry point is given. Without having access to actual
exploits (or crashes), the locations of entry points are ambiguous.
Hence, we have selected arbitrary locations as the entry points. This
allows BOPC to find payloads for the evaluation without having
access to concrete exploits. In practice, BOPC would leverage the
given entry points as starting points. We demonstrate several test
cases where the entry points are precisely at the start of functions,
deep in the Call Graph, to show the power of our approach. Or-
thogonally, we allow for vulnerabilities to exist in the middle of a

function. In such situations, BOPC would set our entry point to the
location after the return of the function.

The lack of the exact entry point complicates the verification
of our solutions. We leverage a debugger to łsimulatež the AWP
and modify the memory on the fly, as we reach the given entry
point. We ensure as we step through our trace that we maintain the
properties of the SPL payload expressed. That is, blocks between
the statements are non-clobbering in terms of register allocation
and memory assignment.

7 CASE STUDY: NGINX

We utilize a version of the nginx web server with a known memory
corruption vulnerability [14] that has been exploited in the wild to
further study BOPC. When an HTTP header contains the łTransfer-
Encoding: chunkedž attribute, nginx fails to properly bounds check
the received packet chunks, resulting in stack buffer overflow. This
buffer overflow [6] results in an arbitrary memory write, fulfilling
the AWP requirement. For our case study we select three of the
most interesting payloads: spawning a shell, an infinite loop, and
a conditional branch. Table 7 shows metrics collected during the
BOPC execution for these cases.

Payload Time |CB | Mappings |δG | |Hk |

execve 0m:55s 10,407 142,355 1 1
infloop 4m:45s 9,909 14 1 1
ifelse 1m:47s 10,782 182 4 2

Table 7: Performance metrics (run on Ubuntu 64-bit with an

i7 processor) for BOPC on nginx. Time = time to synthesize

exploit, |CB | = # candidate blocks,Mappings = # concrete regis-

ter and variablemappings, |δG | = # delta graphs created, |Hk |

= # of induced subgraphs tried.

7.1 Spawning a shell

Function ngx_execute_proc is invoked through a function pointer,
with the second argument (passed to rsi, according to x64 calling
convention), being a void pointer that is interpreted as a struct
to initialize all arguments of execve:

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-flow

integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC) (2009).

[2] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J Schwartz, Mav-
erick Woo, and David Brumley. 2014. Automatic exploit generation. Commun.
ACM 57, 2 (2014), 74ś84.

[3] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. 2011. Jump-
oriented programming: a new class of code-reuse attack. In Proceedings of the
6th ACM Symposium on Information, Computer and Communications Security.

[4] Nathan Burow, Scott A Carr, Stefan Brunthaler, Mathias Payer, Joseph Nash, Per
Larsen, and Michael Franz. 2018. Control-flow integrity: Precision, security, and
performance. ACM Computing Surveys (CSUR) (2018).

[5] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs..
In OSDI.

[6] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R
Gross. 2015. Control-Flow Bending: On the Effectiveness of Control-Flow In-
tegrity.. In USENIX Security.

[7] Nicholas Carlini and David Wagner. 2014. ROP is Still Dangerous: Breaking
Modern Defenses.. In USENIX Security.

[8] Miguel Castro, Manuel Costa, and Tim Harris. 2006. Securing software by
enforcing data-flow integrity. In Proceedings of the 7th symposium on Operating
systems design and implementation.

[9] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. 2010. Return-oriented programming
without returns. In Proceedings of the 17th ACM conference on Computer and
communications security.

[10] Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua Ding, Huijie DENG, et al. 2014.
ROPecker: A generic and practical approach for defending against ROP attack.
(2014).

[11] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
2009. Introduction to Algorithms. The MIT press.

[12] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. 1998. Stack-
guard: automatic adaptive detection and prevention of buffer-overflow attacks..
In Usenix Security.

[13] CVEApache 2006. CVE-2006-3747: Off-by-one error in Apache 1.3.34. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3747.

[14] CVEnginx 2013. CVE-2013-2028: Nginx http server chunked encoding buffer over-
flow 1.4.0. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028.

[15] CVEnullhttpd 2004. CVE-2002-1496: Heap-based buffer overflow in Null HTTP
Server 0.5.0. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1496.

[16] CVEopenssh 2001. CVE-2001-0144: Integer overflow in OpenSSH 1.2.27. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144.

[17] CVEorzhttpd 2009. CVE/bug in OrzHTTPd - Format String. https://www.
exploit-db.com/exploits/10282/.

[18] CVEproftpd 2006. CVE-2006-5815: Stack buffer overflow in ProFTPD 1.3.0. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5815.

[19] CVEsmbclient 2009. CVE-2009-1886: Format string vulnerability in smbclient
3.2.12. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1886.

[20] CVEsudo 2012. CVE-2012-0809: Format string vulnerability in SUDO 1.8.3. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0809.

[21] CVEWireshark 2014. CVE-2014-2299: Buffer overflow in Wireshark 1.8.0. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-2299.

[22] CVEwuftpd 2001. CVE-2000-0573: Format string vulnerability in wu-ftpd 2.6.0.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0573.

[23] Thurston HY Dang, Petros Maniatis, and David Wagner. 2015. The performance
cost of shadow stacks and stack canaries. In Proceedings of the 10th ACM Sympo-
sium on Information, Computer and Communications Security. ACM, 555ś566.

[24] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. 2014.
Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow
Integrity Protection.. In USENIX Security.

[25] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. 2011. ROPdefender: A
detection tool to defend against return-oriented programming attacks. In Proceed-
ings of the 6th ACM Symposium on Information, Computer and Communications
Security.

[26] Solar Designer. 1997. return-to-libc attack. Bugtraq, Aug (1997).
[27] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim, and Wenke

Lee. 2017. Efficient Protection of Path-Sensitive Control Security. (2017).
[28] Tyler Durden. 2002. Bypassing PaX ASLR protection. Phrack magazine #59

(2002).
[29] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,

Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control jujutsu: On the
weaknesses of fine-grained control flow integrity. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security.

[30] Andreas Follner, Alexandre Bartel, Hui Peng, Yu-Chen Chang, Kyriakos Ispoglou,
Mathias Payer, and Eric Bodden. 2016. PSHAPE: Automatically Combining
Gadgets for Arbitrary Method Execution. In International Workshop on Security
and Trust Management.

[31] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. 2014.
Out of control: Overcoming control-flow integrity. In Security and Privacy (SP),
2014 IEEE Symposium on.

[32] Andrei Homescu, Michael Stewart, Per Larsen, Stefan Brunthaler, and Michael
Franz. 2012. Microgadgets: size does matter in turing-complete return-oriented
programming. In Proceedings of the 6th USENIX conference on Offensive Technolo-
gies. USENIX Association, 7ś7.

[33] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai
Liang. 2015. Automatic Generation of Data-Oriented Exploits.. In USENIX Secu-
rity.

[34] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. 2016. Data-oriented programming: On the expressiveness of
non-control data attacks. In Security and Privacy (SP), 2016 IEEE Symposium on.

[35] Emily R Jacobson, Andrew R Bernat, William R Williams, and Barton P Miller.
2014. Detecting code reuse attackswith amodel of conformant program execution.
In International Symposium on Engineering Secure Software and Systems.

[36] Arthur B Kahn. 1962. Topological sorting of large networks. Commun. ACM
(1962).

[37] V Katoch. [n. d.]. Whitepaper on bypassing aslr/dep. Technical Report. Secfence,
Tech. Rep., September 2011.[Online]. Available: http://www.exploit-db.com/
wp-content/themes/exploit/docs/17914.pdf.

[38] Kil3r and Bulba. 2000. Bypassing StackGuard and StackShield. Phrack magazine
#53 (2000).

[39] James C King. 1976. Symbolic execution and program testing. Commun. ACM
(1976).

[40] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R Sekar,
and Dawn Song. 2014. Code-Pointer Integrity.. In OSDI, Vol. 14. 00000.

[41] Microsoft. 2015. Visual Studio 2015 Ð Compiler Options Ð Enable Control Flow
Guard. https://msdn.microsoft.com/en-us/library/dn919635.aspx.

[42] Tilo Müller. 2008. ASLR smack & laugh reference. Seminar on Advanced Exploita-
tion Techniques (2008).

[43] Urban Müller. 1993. Brainfuckśan eight-instruction turing-complete program-
ming language. Available at the Internet address http://en. wikipedia. org/wik-
i/Brainfuck (1993).

[44] Ben Niu and Gang Tan. 2014. Modular control-flow integrity. ACM SIGPLAN
Notices 49 (2014).

[45] Ben Niu and Gang Tan. 2015. Per-input control-flow integrity. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security.

[46] Pakt. 2013. ropc: A turing complete ROP compiler. https://github.com/pakt/ropc.
[47] Vasilis Pappas. 2012. kBouncer: Efficient and transparent ROP mitigation. tech.

rep. Citeseer (2012).
[48] PAX-TEAM. 2003. PaX ASLR (Address Space Layout Randomization). http:

//pax.grsecurity.net/docs/aslr.txt.
[49] Mathias Payer, Antonio Barresi, and Thomas R Gross. 2015. Fine-grained control-

flow integrity through binary hardening. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment.

[50] Michalis Polychronakis and Angelos D Keromytis. 2011. ROP payload detection
using speculative code execution. In Malicious and Unwanted Software (MAL-
WARE), 2011 6th International Conference on.

[51] Gerardo Richarte et al. 2002. Four different tricks to bypass stackshield and
stackguard protection. World Wide Web (2002).

[52] Jonathan Salwan and Allan Wirth. 2012. ROPGadget. https://github.com/
JonathanSalwan/ROPgadget.

[53] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit object-oriented programming: On
the difficulty of preventing code reuse attacks in C++ applications. In Security
and Privacy (SP), 2015 IEEE Symposium on.

[54] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2011. Q: Exploit
Hardening Made Easy.. In USENIX Security Symposium.

[55] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit testing
engine for C. InACM SIGSOFT Software Engineering Notes, Vol. 30. ACM, 263ś272.

[56] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86). In Proceedings of CCS 2007, Sabrina
De Capitani di Vimercati and Paul Syverson (Eds.). ACM Press, 552ś61.

[57] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. 2004. On the effectiveness of address-space randomization. In
Proceedings of the 11th ACM conference on Computer and communications security.

[58] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. 2016. SOK:(State of) The Art of War: Offensive Techniques in Binary
Analysis. In Security and Privacy (SP), 2016 IEEE Symposium on.

[59] Jack Tang and Trend Micro Threat Solution Team. 2015. Exploring con-
trol flow guard in windows 10. Available at "http://blog.trendmicro.com/
trendlabs-security-intelligence/exploring-control-flow-guard-in-windows-10"

(2015).
[60] The Chromium Projects. [n. d.]. Control Flow Integrity The Chromium Projects.

"https://www.chromium.org/developers/testing/control-flow-integrity".
[61] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar

Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM.. In USENIX Security.

[62] Takeaki Uno. 1997. Algorithms for enumerating all perfect, maximum and
maximal matchings in bipartite graphs. Algorithms and Computation (1997).

[63] Arjan van de Ven and Ingo Molnar. 2004. Exec shield. https://www.redhat.com/
f/pdf/rhel/WHP0006US_Execshield.pdf.

[64] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Lionel Sambuc,
Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015. Practical Context-
Sensitive CFI. In Proceedings of the 22nd Conference on Computer and Communi-
cations Security (CCS’15).

[65] Victor van der Veen, Dennis Andriesse, Manolis Stamatogiannakis, Xi Chen,
Herbert Bos, and Cristiano Giuffrida. 2017. The Dynamics of Innocent Flesh on
the Bone: Code Reuse Ten Years Later. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017. 1675ś1689. https://doi.org/10.1145/3133956.
3134026

[66] RN Wojtczuk. 2001. The advanced return-into-lib (c) exploits: PaX case study.
Phrack Magazine, Volume 0x0b, Issue 0x3a, Phile# 0x04 of 0x0e (2001).

[67] Jin Y Yen. 1971. Finding the k shortest loopless paths in a network. management
Science 17, 11 (1971), 712ś716.

A EXTENDED BACKUS-NAUR FORM OF SPL

⟨SPL⟩ ::= void payload() { ⟨stmts⟩ }

⟨stmts⟩ ::= (⟨stmt⟩ | ⟨label⟩)* ⟨return⟩?
⟨stmt⟩ ::= ⟨varset⟩ | ⟨regset⟩ | ⟨regmod⟩ | ⟨call⟩

| ⟨memwr⟩ | ⟨memrd⟩ | ⟨cond⟩ | ⟨jump⟩

⟨varset⟩ ::= int64 ⟨var⟩ = ⟨rvalue⟩;

| int64* ⟨var⟩ = {⟨rvalue⟩ (, ⟨rvalue⟩)*};
| string ⟨var⟩ = ⟨str⟩;

⟨regset⟩ ::= ⟨reg⟩ = ⟨rvalue⟩;
⟨regmod⟩ ::= ⟨reg⟩ ⟨op⟩= ⟨number⟩;

⟨memwr⟩ ::= *⟨reg⟩ = ⟨reg⟩;

⟨memrd⟩ ::= ⟨reg⟩ = *⟨reg⟩;

⟨call⟩ ::= ⟨var⟩ ((ϵ | ⟨reg⟩ (, ⟨reg⟩)*);
⟨label⟩ ::= ⟨var⟩:
⟨cond⟩ ::= if (⟨reg⟩ ⟨cmpop⟩ ⟨number⟩) goto ⟨var⟩;

⟨jump⟩ ::= goto ⟨var⟩;

⟨return⟩ ::= returnto ⟨number⟩;

⟨reg⟩ := ‘__r’⟨regid⟩
⟨regid⟩ := [0-7]
⟨var⟩ := [a-zA-Z_][a-zA-Z_0-9]*

⟨number⟩ := (‘+’ | ‘-’) [0-9]+ | ‘0x’[0-9a-fA-F]+

⟨rvalue⟩ := ⟨number⟩ | ‘&’ ⟨var⟩
⟨str⟩ := [.]*

⟨op⟩ := ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘&’ | ‘|’ | ‘~’ | ‘<<’ | ‘<<’

⟨cmpop⟩ := ‘==’ | ‘!=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’

B STITCHING BOP GADGETS IS NP-HARD

We present the NP-hardness proof for the BOP Gadget stitching
problem. This problem reduces to the problem of finding the mini-

mum induced subgraph Hk in a delta graph. Furthermore, we show
that this problem cannot even be approximated.

A1 A2 A3

B1 B2

C1

D2D1 D3

8 12 42

11 13

7 17

11 1050

17

∞ ∞

∞

∞ ∞

∞

∞

Figure 8: An delta graph instance. The nodes along the black

edges form a flat delta graph. In this case, the minimum in-

duced subgraph, Hk is A3,B1,C1,D1, with a total weight of 20,
which is also the shortest path from A3 to D1. When delta

graph is not flat (assume that we add the blue edges), the

shortest path nodes constitute an induced subgraph with a

total weight of 70. However Hk has total weight 34 and con-

tains A3,B2,C1,D2. Finally, the problem of finding the mini-

mum induced subgraph becomes equivalent to finding a k-

clique if we add the red edges with∞ cost between all nodes

in the same set.

Let δG be a multipartite directed weighted delta graph with k

sets. Our goal is to select exactly one node (i.e., functional block)
from each set and form the induced subgraph Hk , such that the total
weight of all of edges is minimized:

min
Hk ⊂δG

∑

e ∈Hk

distance(e) (1)

A δG is flat, when all edges from ith set are towards (i + 1)th set.
The nodes and the black edges in Figure 8 are such an example. In
this case, the minimum induced subgraph, is the minimum among
all shortest paths that start from some node in the first set and end
in any node in the last set. However, if the δG is not flat (i.e., the
SPL payload contains jump statements, so edges from ith set can
go anywhere), the shortest path approach does not work any more.
Going back in Figure 8, if we make some loops (add the blue edges),
the previous approach does not give the correct solution.

It turns out that the problem is NP-hard if the δG is not flat . To
prove this, we will use a reduction from K-Clique: First we apply
some equivalent transformations to the problem. Instead of having
K independent sets, we add an edge with∞ weight between every
pair on the same set, as shown in Figure 8 (red edges). Then, the
minimum weight K-induced subgraph Hk , cannot have two nodes
from the same set, as this would imply that Hk contains an edge
with∞ weight.

Let R be an undirected un-weighted graph that we want to
check whether it has a k-clique. That is, we want to check whether
clique(R,k) is True or not. Thus, we create a new directed graph
R′ as follows:

• R′ contains all the nodes from R

• ∀ edge (u,v) ∈ R, we add the edges (u,v) and (v,u) in R′

withweiдht = 0

